Mais informações

Bryan, Harvey Harvey; Elhinnawy, Tarek; Antia, Porus. Tools for the mitigation of the urban heat island. 2005 SOLAR WORLD CONGRESS, 2005, Orlando, Flórida.
Clique no nome do(s) autor(es) para ver o currículo Lattes:

Dados do autor na base InfoHab:
Número de Trabalhos: 1 (Nenhum com arquivo PDF disponível)
Citações: Nenhuma citação encontrada
Índice h: Indice h não calculado  
Co-autores: Nenhum co-autor encontrado

Dados do autor na base InfoHab:
Número de Trabalhos: 1 (Nenhum com arquivo PDF disponível)
Citações: 1
Índice h: 1  
Co-autores: Nenhum co-autor encontrado

Dados do autor na base InfoHab:
Número de Trabalhos: 1 (Nenhum com arquivo PDF disponível)
Citações: Nenhuma citação encontrada
Índice h: Indice h não calculado  
Co-autores: Nenhum co-autor encontrado

Resumo

Não Disponivel

Abstract

This paper explores various methods of mitigating the urban heat island effect in a hot dry climate by the use of tools like computer simulation programs and thermal imaging. Many of the outdoor urban surfaces such as sidewalks and building surfaces use low albedo materials that have high thermal capacity and exhibit high surface temperatures. The aggregation of such high surface temperatures is the prime cause of the urban heat island. Our understanding of this phenomenon has been hampered because the physics of radiant heat exchange (i.e., direct solar, long wave reradiation from building materials, time lagged heat release) are so complex that it can only be modeled accurately at the urban scale by computer simulation. The study models the entrance of an educational building located on the campus of Arizona State University using a simulation program called RadTherm to ptimize the interaction between building materials, surface properties, adjacencies (view factors) and resultant surface temperatures. The thermal performance of the entrance of the building is compared with thermal images generated using an infrared camera to demonstrate the possible application of the simulation program for developing urban design guidelines to mitigate the urban heat island. At the same time Sol-air calculations were also performed in order to create a bench mark to compare against other widely used tools for determining surface temperature. The primary focus of this paper is to try and develop a tool for professionals to use to make an informed set of decisions regarding material selection for the mitigation of urban heat island effects.
-