Mais informações

Levin, P. A. Combined air flow and thermal analysis of a combined heating and ventilation system. International Journal Of Low Energy And Sustainable Buildings, Stockholm, v. 2, nov. 2002. ISSN 1403-2147.
Clique no nome do(s) autor(es) para ver o currículo Lattes:

Dados do autor na base InfoHab:
Número de Trabalhos: 1 (Nenhum com arquivo PDF disponível)
Citações: Nenhuma citação encontrada
Índice h: Indice h não calculado  
Co-autores: Nenhum co-autor encontrado

Resumo

The prediction of energy use, air flows and temperatures in different rooms of a building and at different climatic conditions is very important, especially when evaluating new concepts for heating and ventilation systems in combination with different building envelope constructions. A thorough system analysis considering coupled air flow and thermal calculations becomes very complex if e.g. thermal bridges and dynamic conditions are considered. The substance of this paper is to describe a relatively simple methodology for system analysis that has been applied to a house and to compare obtained results from measurements and calculations. The methodology consists of initial calculation of air flows using the multi-zone model IDA-MAE for different configurations and climatic conditions. The air flows are then included in a TSBI3 computer model for temperature and energy use calculations. User-friendly computer tools that combine multi-zone air flow and thermal calculations are desired to simplify a sensitivity analysis, and this will also increase the precision in the predictions. This development is in progress internationally. Further development of field methods to measure the air leakage characteristics of building components and individual air leakage paths would be useful to increase the knowledge of especially interior air leakage paths in buildings. The evaluated building concept, called TEEG, uses a heated crawlspace to distribute ventilation and heating air through gaps in the floors along the external walls. As the system relies on distribution of warm air through gaps in the floors, it becomes very sensitive to uncontrolled air leakage paths. Measurements on air leakage become an important quality control tool for buildings using this concept.
-