Mais informações

DA FONSECA, Raphaela Walger; DIDONÉ, Evelise Leite; PEREIRA, Fernando Oscar Ruttkay. Modelos de predição da redução do consumo energético em edifícios que utilizam a iluminação natural através de regressão linear multivariada e redes neurais artificiais. Ambiente Construído, Porto Alegre, v. 12, n. 1, p. 163-175, jan./mar. 2012.
Clique no nome do(s) autor(es) para ver o currículo Lattes:

Dados do autor na base InfoHab:
Número de Trabalhos: 1 (Nenhum com arquivo PDF disponível)
Citações: Nenhuma citação encontrada
Índice h: Indice h não calculado  
Co-autores: Nenhum co-autor encontrado

Resumo

Muitos estudos já comprovaram a preferência dos usuários pela luz natural como fonte de luz em edificações. Além de benefícios à saúde atribuídos a sua influência no ritmo circadiano humano, a elevada qualidade na reprodução de cor, entre outros aspectos, a luz natural apresenta reconhecido potencial de economia de energia quando substitui ou complementa a iluminação artificial. Outro fator a ser considerado é que a maior disponibilidade de iluminação natural coincide com o horário comercial de funcionamento de edificações de escritório. Neste contexto, o objetivo deste trabalho é demonstrar um comparativo entre dois modelos de aproximação de funções utilizadas para representar o potencial de economia de energia través do uso da iluminação natural em escritórios. São eles: Regressão Linear Multivariada e Regressão Não Linear Multivariada, também conhecida como Rede Neural Artificial (RNA). Os resultados mostraram que as RNAs são mais adequadas para esse tipo de problema devido a sua grande habilidade de aprender, o que permite melhor capacidade de generalizar os dados em relação à Regressão Linear Multivariada.

Abstract

Many studies have confirmed users' preference for daylight as a light source in buildings. In addition to the health benefits attributed to its influence on human circadian rhythms, high quality colour reproduction and other aspects, daylight has a known potential for energy savings when replacing or supplementing artificial lighting. Another factor to be considered is that the availability of daylight coincides with the working hours of commercial office buildings. In this context, the objective of this paper is to draw a comparison between two types of approximation methods used to estimate the potential energy savings through the use of daylight in office buildings. These approximation methods models are: Linear and Nonlinear Multivariate Regression, also known as Artificial Neural Network (ANN). The results show that ANNs are particularly suitable for this type of problem due to their learning aptitude, which allows significantly better extrapolation of the learning data than Multivariate Linear Regression.
-