Mais informações

CHOW, T. T. et al. Applying neural network and genetic algoritmo in chiller system optimization. In: BUILDING SIMULATION, 7., 2001, Rio de Janeiro. Anais... Rio de Janeiro, 2001. p. 1059-1066.
Clique no nome do(s) autor(es) para ver o currículo Lattes:

Dados do autor na base InfoHab:
Número de Trabalhos: 1 (Nenhum com arquivo PDF disponível)
Citações: 1
Índice h: 1  
Co-autores: 2

Dados do autor na base InfoHab:
Número de Trabalhos: 4 (Com arquivo PDF disponíveis: 4)
Citações: Nenhuma citação encontrada
Índice h: Indice h não calculado  
Co-autores: Nenhum co-autor encontrado

Abstract

The optimal use of electrical and fuel energy in a chiller system, like absorption chiller system, is important in achieving economical system operation. The related research work, including the derivation of a thermal model for the system by an integration of component models can be a tedious task, based on the technology today. The numerous assumptions associated with the governing equations and the nonlinear structure of the equation set as a result are often the limitations in computer simulation for producing reliable converging solutions. In many practical applications, like the selection of a global optimal supervisory control scheme, a system-based ANN modeling approach appears to be an attractive alternative. This paper describes the required process of deriving an artificial neural network model of a direct-fired double-effect absorption chiller system. Also discussed is a new concept of integrating neural network and genetic algorithm in the system optimal control.
-